

ASISTENCIA TÉCNICA PARA EL ESTUDIO DE PLANTACIÓN DE SEBADALES

ASISTENCIA TÉCNICA PARA EL ESTUDIO DE PLANTACIÓN DE SEBADALES:

Análisis genético sobre la viabilidad del sebadal de Granadilla como pradera donante y posibles sebadales receptores en Canarias

Autor:

Manent Sintes, Pablo

Coordinadora: González Henríquez, Nieves

En Telde, a 25 de Enero de 2008

ÍNDICE

1. Introducción1
2. Material y métodos2
2.1. Recolección de las muestras2
2.2. Procesado de las muestras3
2.3. Discriminación de clones
2.4. Análisis genético de los datos
3. Resultados5
3.1. Variación genética poblacional5
3.2. Diferenciación interpoblacional9
4. Discusión y Conclusiones15
5. Pibliografía

1. INTRODUCCIÓN

C. nodosa es una fanerógama marina de origen tropical, actualmente restringida al Mediterráneo y al Atlántico nororiental, desde el sur de Portugal hasta Senegal, incluyendo las islas Canarias y Madeira (Marbà y Terrados, 2004).

Debido a la elevada sensibilidad de esta planta ante perturbaciones de origen antrópico y a su importancia ecológica como estabilizadora de los sustratos blandos, la especie está incluida en el Catálogo de Especies Amenazadas de Canarias, regulado por el decreto 151/2001, de 23 de julio, como "sensible a la alteración del hábitat". Por otra parte, el tipo de hábitat constituido por las fanerógamas marinas se encuentra recogido en la Directiva 92/43/CEE, de 21 de mayo, del Consejo, relativa a la conservación de los hábitats naturales y de la fauna y flora silvestres, con el Código número 1110, estando protegidos por la Unión Europea, como Lugares de Interés Comunitario (LIC).

Para objetivos de gestión, el mantenimiento de las poblaciones de fanerógamas marinas debe de estar basado en cuestiones sobre la estructura genética incluyendo la comprensión de la conectividad entre las poblaciones de fanerógamas marinas a lo largo de las áreas costeras. Esto incluye valoraciones sobre el flujo genético, la deriva genética, la influencia del efecto fundador, las ventajas de la heterocigosidad, la identificación de presiones selectivas así como determinar la existencia de metapoblaciones (sensu Orth et al., 1994).

La restauración genética es una disciplina reciente que está incrementando enormemente sus conocimientos en base a experimentos que pueden testar hipótesis sobre aspectos críticos que mantienen la estructura de las poblaciones así como aspectos sobre la colonización o la adaptación local de las especies modelo (mirar en: Hufford y Mazer, 2003; Mckay et al., 2005; Lesica y Allendorf, 1999; Montalvo et al. 1997). Por otro lado, numerosos estudios experimentales que han utilizado condiciones ambientales controladas han conseguido conectar las bases teóricas de genética de poblaciones con aspectos prácticos aplicados a la restauración genética.

Sin embargo, a pesar que este crecimiento exponencial hay un desconocimiento a cerca de las directrices a seguir en la genética de la restauración sobre otras especies debido a que no queda claro como deben usarse los resultados obtenidos con la correcta decisión para guiar buenas prácticas a la hora de mover individuos entre poblaciones.

Así pues, es nuestro deber intentar en la medida de lo posible evitar la modificación de estos procesos que mantienen las estructuras demográficas y genéticas de las poblaciones vegetales y que, consecuentemente, ofrecen a las especies la aptitud de evolucionar satisfactoriamente y mantener un equilibrio dinámico con el ambiente y entre las especies que estructuran las comunidades naturales.

Entonces, es de vital importancia en términos ecológicos y evolutivos comprender que factores y procesos son claves para la especie *C. nodosa* en el archipiélago canario. Al mismo tiempo, intentar focalizar el conocimiento a cerca de como podría afectar la disminución del tamaño poblacional en el sebadal de Granadilla en términos de diversidad genética y el efecto resultante sobre la conectividad genética entre los sebadales de la isla de Tenerife.

Esto es crítico para establecer medidas de traslocación y/o reintroducción de material vegetal de la especie proveniente de esta zona hacia otras praderas receptoras para minimizar las consecuencias evolutivas perjudiciales para la especie (y como se ha mencionado antes) y, en consecuencia, para todas las especies que dependen de ella, que en el hábitat creado por *C. nodosa* es elevadísima, en la medida de lo posible.

El objetivo principal que persigue el presente estudio genético sobre la especie *C. nodosa* es determinar el papel que juega el sebadal de Granadilla a nivel del archipiélago y concretamente en Tenerife, mediante algunos conceptos y procesos fundamentales en genética de poblaciones y evolución para seleccionar zonas receptoras de material vegetal proveniente de dicho sebadal. Para alcanzar tal objetivo previamente se determinará la influencia de este sebadal sobre (i) el mantenimiento y generación la diversidad genética, y que explican el éxito o el declive de las poblaciones, en (ii) las relaciones entre las diferentes poblaciones, que pueden permitir interpretar patrones de migración y seleccionar poblaciones receptoras para acciones de restauración (Falk et al., 2001), y (iii) la interacción de las variables genéticas con procesos bióticos (intrínsecos a los organismos y dependientes de su linaje y biología reproductiva) y abióticos (dependientes de contingencias históricas o ambientales).

2. MATERIAL Y MÉTODOS

2.1 RECOLECCIÓN DE LAS MUESTRAS

Durante los años 2003, 2006 y 2007 se recolectaron muestras de varias localidades de *C. nodosa* en las islas Canarias repartidas en 6 islas (Figura 1 y Tabla1). En Granadilla, debido a la gran superficie ocupada por el sebadal, se llevó a cabo un muestreo que abarcara prácticamente toda el área que ocupa la población para conseguir una estimación adecuada de la diversidad genética de la zona.

Fig. 1: Localidades de Cymodocea nodosa muestreadas y analizadas en las islas Canarias.

Junto con los datos creados a partir de las muestras recolectadas por el ICCM en Tenerife, se analizaron también los datos correspondientes a los sebadales de Playa Blanca (Lanzarote), Gran Tarajal y Punta Jandía (Fuerteventura), Las Canteras, Taliarte, Arinaga y Bahía Feliz (Gran Canaria), Las Teresitas, El Médano y San Juan (Tenerife) que habían sido muestreados y genotipados con anterioridad por el Dr. Filipe Alberto (Alberto et al. 2006, Alberto et al. 2007) y cedidos para su análisis en conjunto con el resto de poblaciones por el equipo de investigación liderado por la Dra. Ester Serrâo (MAREE-CCMAR-Universidade do Algarve). Además, también se adicionaron al análisis muestras de los sebadales de Lanzarote: Arrieta, Costa Teguise, Puerto del Carmen; de Fuerteventura: Jandía (Jandía I-Jandía GVIII), Playita del Porís, Playa Blanca, La Lajita; Gran Canaria:

Medio Almud y Gui-Gui; La Gomera y El Hierro que fueron recolectadas a través de otro proyecto de investigación del ICCM pero que podrían ayudar a interpretar los resultados obtenidos y beneficiar en la correcta elección de posibles sebadales receptores para trasplantar.

En cada población se realizó un muestreo aleatorio dentro de una cuadrícula de 60 x 14 m en la que se recolectaron 40 muestras o "ramets" al azar dentro de dicho área. Las muestras estaban formadas por un mínimo de 3 haces conectados por el mismo rizoma. Se limpiaron las hojas de epífitos de cada muestra. Acto seguido, se dejaron secar en papel de periódico para eliminar el máximo de humedad posible antes de introducirlas en bolsas individuales codificadas, donde se mantuvieron conservadas en gel de sílice hasta su completo secado para su posterior procesado en el laboratorio.

2.2 PROCESADO DE MUESTRAS

El trabajo de laboratorio consistió en la extracción del DNA a partir del material vegetal de cada muestra en forma de polvo. Se siguió el método de extracción CTAB 2X (Doyle y Doyle, 1987) con algunas modificaciones optimizadas para la especie en estudio (Alberto, datos no publicados). Basadas en los tiempos y las revoluciones por minuto que debían llevarse a cabo en los pasos de centrifugación, en un reajuste de las cantidades y volúmenes de los reactivos a usar durante el protocolo.

Después de la extracción, se utilizaron 3 multiplex PCR con marcaje fluorescente para analizar un total de 8 loci microsatélites en un secuenciador automático ABI 377 mediante el uso del software GENESCAN (Applied Biosystems). Se siguieron las indicaciones de amplificación y genotipado utilizadas en Alberto et al. (2005).

2.3 DISCRIMINACIÓN DE CLONES

Cymodocea nodosa puede reproducirse tanto asexualmente (creciendo de un modo vegetativo y con la capacidad de crear unidades modulares repetitivas, clones o "ramets" del mismo individuo genético o "genet") como sexualmente (cuando se crean individuos genéticamente diferenciados a partir de eventos de recombinación tras la fusión de los gametos).

Puesto que nuestros datos genéticos identifican a cada muestra recolectada (o ramet) mediante un determinado genotipo formado por combinaciones alélicas correspondientes a 8 loci (que denominaremos desde ahora MLG, por "Multi-Locus Genotype"), cuando los MLG que representan a 2 o más muestras son iguales hemos de evaluar si (i) son resultado de eventos de clonalidad (y, por tanto, pertenecen al mismo genet), o (ii) se trata de individuos sexuales (genets diferentes) que, por azar, comparten idénticos MLGs. Mientras que disponer de la matriz completa (ramets + genets) es imprescindible desde el punto de vista de estructura genética intra-poblacional, para evaluar el impacto de la clonalidad y estimar el área donde esperamos encontrar clones, las estimaciones de los niveles de diversidad genética y de las relaciones entre las subpoblaciones deben basarse solamente en la matriz de genets, pues que de lo contrario estaríamos dando mayor peso a los alelos que estuvieran representados en los clones.

La matriz inicial de MLGs (compuesta por ramets y genets) se analizó estadísticamente para identificar los MLGs que podrían representar clones que formaban un solo genet y eliminarlos de la matriz a utilizar para el análisis de diversidad genética. Para

iniciar este proceso, se eliminaron primero de la matriz inicial todas las réplicas que podían ser clonales y se testó la hipótesis de equilibrio Hardy-Weinberg (HW) para cada una de las poblaciones mediante un test exacto de probabilidad (Raymond y Rousset, 1995a).

Con estos resultados, siguiendo las indicaciones de Arnaud-Haond et al. (2007), Arnaud-Haond et al. (2005), Park y Werth (1993) y Sydes y Peakall (1998), se calcularon sobre la matriz inicial la probabilidad de aparición de cada MLG (*P*GEN) y la probabilidad de que 2 copias o más de un MLG se hayan formado a partir de eventos sexuales (*P*SEX) teniendo en cuenta el coeficiente de consanguinidad *F*is (Weir y Cokerham, 1984). *P*GEN y *P*SEX se calcularon usando el programa informático GENECLONE 1.1 (no publicado pero modificado a partir de Arnaud-Haond y Belkhir, 2007). Se ha considerado como individuos derivados de eventos sexuales a las 2 o más copias de MLGs con una *P*SEX mayor de 0.05.

2.4 ANÁLISIS GENÉTICO DE LOS DATOS

La riqueza genotípica se estimó por población según Dorken y Eckert (2001) como:

$$R = (G-1)/(N-1)$$

Donde G es el nº de MLGs observados y N el nº de muestras (ramets) analizadas.

Después de eliminar los ramets que pertenecían a un mismo genet del conjunto de datos, se estimaron las frecuencias alélicas y el coeficiente de consanguinidad FIS (Weir y Cokerham, 1984) y se testó nuevamente la hipótesis de equilibrio HW para cada población como se explicó anteriormente. Todos estos análisis se llevaron a cabo usando el programa informático GENEPOP (Raymond y Rousset, 1995b).

El programa Transformer-3 (Caujapé-Castells y Baccarani-Rosas 2005) se utilizó para la transformación rápida y sin errores de la matriz de genotipos en los archivos de entrada requeridos por cada programa informático de análisis de datos genéticos utilizado. Los estimadores básicos de variación genética poblacional [nº de loci polimórficos P (criterio 0.99), la heterocigosidad observada (P0bs) y la heterocigosidad esperada (P0cs) se calcularon mediante el programa BIOSYS-1 versión 1.7 (Swofford y Selander, 1989). Se estimó también para cada población la riqueza alélica P0 (Alberto et al. 2006; Leberg, 2002) utilizando la rutina standArich (Alberto 2006, no publicado) dentro del paquete estadístico R (P0cvelopment Core Team).

Se calcularon los valores del estimador θ de FST (Weir y Cokerham, 1984) para describir los niveles de diferenciación entre pares de poblaciones y se testó estadísticamente si había diferencias significativas en la distribución alélica entre pares de poblaciones usando el test exacto de Fischer, mediante el programa GENEPOP (Raymond y Rousset, 1995a, b).

Por otro lado, considerando el conjunto de localidades muestreadas de Canarias se realizó un análisis molecular de la varianza (AMOVA, Excoffier et al., 1992) con tres niveles jerárquicos para analizar la distribución de la variación genética entre grupos (islas), entre las poblaciones de una misma isla y dentro de las poblaciones. Para las localidades muestreadas en la isla de Tenerife, se realizó el mismo AMOVA con tres niveles jerárquicos: entre grupos (conjunto de localidades en la misma orientación sobre la línea de costa), entre poblaciones dentro de cada grupo y dentro de las poblaciones. En Tenerife también se llevó a cabo otro AMOVA con dos niveles jerárquicos para analizar la distribución de la variación genética entre poblaciones y dentro de ellas. Todos estos AMOVAs fueron realizados mediante el paquete informático ARLEQUÍN ver 3.0 (Excoffier et al., 2005).

El grado de conectividad o aislamiento genético se examinó entre el conjunto de localidades muestreadas en Canarias por un lado, y por otro, usando las localidades muestreadas en la isla de Tenerife. Para ello se testó la hipótesis de aislamiento por distancia (IBD) (Wright, 1943; Rousset, 1997) usando el paquete informático GENEPOP (Raymond y Rousset, 1995b) mediante el test de Mantel (Mantel, 1967).

Se analizaron las relaciones biogeográficas de las muestras agrupando los datos en tres niveles cada uno de ellos por separado: islas, localidades de todo el archipiélago y localidades de la isla de Tenerife usando la distancia genética de Cavalli-Sforza D_c (Cavalli-Sforza & Edwards, 1967), estimada a partir de las frecuencias alélicas y se representaron gráficamente a través del análisis cluster neighbor-joining (NJ). Se utilizó esta distancia debido a que las simulaciones realizadas para datos de microsatélite revelaron que este estadístico fue superior sobre otras medidas de distancia específicas para este tipo de datos, tales como ($\delta\mu$)2 (Goldstein et al. 1995), teniendo la mayor probabilidad de capturar la tipología correcta del árbol creado (Takezaki y Nei, 1996). Se realizaron transformaciones basadas en 1000 replicas de los datos que dieron como resultado los valores bootstrap en porcentaje, para verificar la robustez estadística de los agrupamientos. Todos estos análisis fueron llevados a cabo con el paquete PHYLIP software (Felsenstein, 1994).

3. RESULTADOS

3.1 VARIACIÓN GENÉTICA POBLACIONAL

Fueron genotipados 1557 ramets de *C. nodosa* de las 40 localidades muestreadas en las islas Canarias, revelando un total de 58 alelos y 966 MLGs (genets) para los 8 loci analizados.

Así, para cada isla se encontraron un total de 32 alelos y 69 MLGs en Lanzarote, 39 alelos y 260 MLGs en Fuerteventura, 35 alelos y 152 MLGs en Gran Canaria, 51 alelos y 403 MLGs en Tenerife, 25 alelos y 65 MLGs en la Gomera y 15 alelos y 17 MLGs para la única localidad muestreada en El Hierro. El número mínimo de MLGs por localidad fue de 9 en Costa Teguise (Lanzarote) y en punta Teno (Tenerife) y el máximo de 39 en GII (Granadilla, Tenerife).

En la figura 2 puede observarse la distribución de las frecuencias alélicas en las islas Canarias. Respecto a los alelos comunes, hubo 2 loci en los que se detectaron tendencias sobre la distribución de los alelos respectivos a lo largo de las 6 islas. Así, el locus Cn2-45 presentó el alelo 224 con frecuencias elevadas en Fuerteventura y muy bajas en el resto de islas. Con el alelo 218 ocurrió el contrario, fue muy frecuente en Lanzarote, Gran Canaria, Tenerife, La Gomera y El Hierro mientras que en Fuerteventura sólo se detectó en bajas frecuencias en el sebadal de Jandía.

El alelo 244 del locus Cn4-19 se encontró en frecuencias muy elevadas en las islas orientales (Lanzarote y Fuerteventura), mientras que su frecuencia fue muy baja en Gran Canaria y Tenerife y ausente en las islas occidentales de La Gomera y El Hierro. Respecto al locus Cn2-18, el alelo 120 estuvo presente en todas las localidades muestreadas del archipiélago con frecuencias muy elevadas y en algunas localidades como Las Teresitas, Arrieta o El Cabrito el alelo fue el único alelo presente y por lo tanto, fijado.

Referente a las localidades de Tenerife, la distribución de las frecuencias alélicas (Fig. 2) mostró que en el conjunto de localidades de la pradera de Granadilla se encontraron 42 alelos, representando el 72.41% de la variación alélica total de Canarias y el 82.4% de

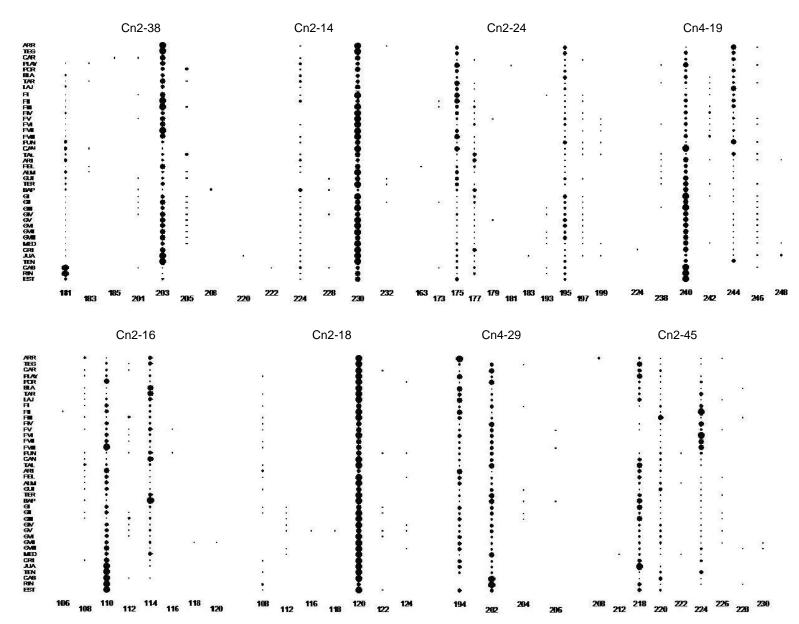


Fig. 2: Distribución de las frecuencias alélicas de los 8 loci analizados para *C. nodosa* en las poblaciones de Tenerife. Círculos: alelos; Diámetro de los círculos: frecuencia alélica.

esta isla. El Médano (53%), Bahía del Porís y San Juan (ambos 43.1%) obtuvieron también valores elevados, y Punta Teno a pesar de tener una *R* muy baja representó el 31.4% de la variación alélica, no tan alejada de la población de las Teresitas o Los Cristianos (39.2% y 37.3%, respectivamente).

Si cuantificamos los alelos exclusivos que aparecieron en el sebadal de Granadilla respecto al total de localidades muestreadas en las islas Canarias, observamos que fueron 5 (230, Cn2-45; 116 y 118 Cn2-18; 118 y 120, Cn2-16) representando el 9% sobre el total. Al unir El Médano a Granadilla se adicionaría 1 alelo (112, Cn2-18), alcanzando el 10%.

Se encontraron alelos exclusivos en esta isla en algunas localidades, como en la pradera de Granadilla (11), Bahía del Porís, El Médano y San Juan (2 cada una) y Los Cristianos (1) mientras que el resto de alelos fueron compartidos. Si consideráramos Granadilla y El Médano como una pradera debido a su proximidad geográfica, dicho sebadal albergaría 16 alelos exclusivos (2 alelos compartidos por ambas poblaciones son diferentes a los exclusivos de cada una) que supusieron el 31% de la variación alélica detectada en esta isla.

Los valores de los parámetros estadísticos de riqueza alélica \hat{A} y riqueza genotípica R pueden observarse en la Tabla 1 y la figura 3. Así, considerando todas las poblaciones del archipiélago analizadas, el valor mínimo de R, 0.21, se detectó en Costa Teguise (Lanzarote) y Punta Teno (Tenerife) y el máximo, 0.97, en GII en Granadilla (Tenerife). Para \hat{A} el valor mínimo, 1.81, fue en La Estaca (El Hierro) y el máximo, 3.37, en FV en Jandía (Fuerteventura). Hay que destacar que 5 de las 8 localidades en Granadilla y el Médano, en Tenerife, tuvieron valores cercanos al máximo, entre 2.92 y 3.11, a diferencia de la mayoría de localidades de las restantes islas.

La figura 3 muestra una tendencia clara0 respecto a los valores de R en Canarias, los valores de las islas de Lanzarote, Fuerteventura y El Hierro fueron menores que los de las islas de Gran Canaria, Tenerife y La Gomera. Si consideramos la riqueza alélica, \hat{A} , no ocurre esta diferenciación tan aparente entre las islas centrales y las orientales, aunque predominaron valores algo mayores en Gran Canaria y Tenerife.

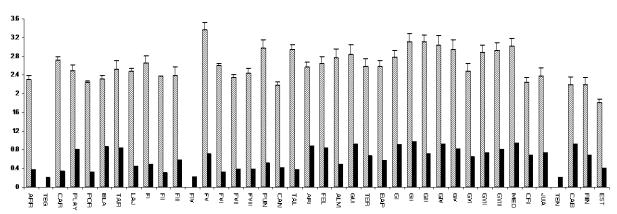


Fig. 3: Distribución de los valores de la riqueza genotípica, *R*, (barras rellenas en negro), y la riqueza alélica (barras rayadas) después de la estandarización para 13 genets (G), en las diferentes localidades analizadas de *Cymodocea nodosa* en las islas Canarias.

TABLA 1: Descriptores básicos de la variación genética de *Cymodocea nodosa* para las poblaciones muestreadas en Tenerife. COD: Código, L: Latitud, I: longitud, P: Profundidad aproximada N: número de ramets muestreados, G: número de genets, *R*: riqueza genotípica, T: número de alelos totales, Â: riqueza alélica después de la estandarización para G(23), *H*obs y *H*exp: heterozigosidad observada y esperada, *F*IS: coeficiente de consanguinidad. Salidas significativas del equilibrio Hardy-Weinberg: ** p < 0.01, * p < 0.05.

Localidad	COD	L	ı	Р	N	G	R	T	A , ± E.S	H _o ± E.S	H _e ± E.S	F _{IS}
Lanzarote												
Arrieta	ARR	29.120887	-13.440627	14-16	39	15	0.37	19	2.31 ± 0.08	0.35 ± 0.13	0.30 ± 0.10	-0.14
Costa Teguise	TEG	28.998836	-13.480500	14-18	40	9	0.21	16		0.51 ± 0.16	0.32 ± 0.10	-0.64 *
Pto. Carmen	CAR	28.922336	-13.634041	8-10	39	14	0.34	21	2.72 ± 0.08	0.56 ± 0.11	0.43 ± 0.08	-0.31 *
Playa Blanca	PLAY	28.861840	-13.828761	7-9	38	31	0.81	23	2.49 ± 0.12	0.36 ± 0.07	0.39 ± 0.06	0.04
Fuerteventura												
Playa El Porís	POR	28.675364	-13.828693	11,5-14,5	40	14	0.33	17	2.25 ± 0.02	0.54 ± 0.11	0.44 ± 0.05	-0.34
Playa Blanca	BLA	28.482410	-13.863153	8-9	40	35	0.87	19	2.31 ± 0.08	0.44 ± 0.08	0.42 ± 0.07	-0.04
Gran Tarajal	TAR	28.208453	-14.022182	7-9	39	33	0.84	25	2.53 ± 0.18	0.35 ± 0.05	0.41 ± 0.06	0.16
La Lajita	LAJ	28.184764	-14.136342	8-10	39	18	0.45	20	2.49 ± 0.05	0.50 ± 0.10	0.42 ± 0.07	-0.17
Jandía I	FI	28.056799	-14.310398	11,4-12,6	40	20	0.49	23	2.66 ± 0.16	0.49 ± 0.09	0.43 ± 0.07	-0.17
Jandía II	FII	28.057524	-14.309807	13-14,5	40	13	0.31	19	2.38 ± 0.00	0.42 ± 0.14	0.31 ± 0.08	-0.43 **
Jandía III	FIII	28.061301	-14.306960	12,5-13,5	40	24	0.59	22	2.39 ± 0.19	0.37 ± 0.11	0.34 ± 0.09	-0.08 **
Jandía IV	FIV	28.062093	-14.306451	13,5-14,4	40	10	0.23	19		0.46 ± 0.10	0.45 ± 0.08	-0.09
Jandía V	FV	28.075362	-14.292372	10,5-11,6	40	29	0.72	28	3.37 ± 0.15	0.59 ± 0.11	0.50 ± 0.09	-0.20 **
Jandía VI	FVI	28.076103	-14.291854	12-13	40	14	0.33	21	2.60 ± 0.05	0.41 ± 0.11	0.41 ± 0.11	-0.05 *
Jandía VII	FVII	28.079155	-14.288000	11-12	40	16	0.38	19	2.35 ± 0.06	0.42 ± 0.11	0.42 ± 0.09	-0.06 *
Jandía VIII	FVIII	28.079808	-14.287231	11,2-12,3	37	15	0.39	19	2.44 ± 0.10	0.31 ± 0.07	0.33 ± 0.06	0.01
Pta. Jandía	PUN	28.071642	-14.497683		35	19	0.53	26	2.98 ± 0.17	0.43 ± 0.06	0.46 ± 0.05	0.07
Gran Canaria												
Canteras	CAN	28.146066	-15.432878	2-3	39	17	0.42	18	2.18 ± 0.08	0.32 ± 0.11	0.28 ± 0.09	-0.13 **
Taliarte	TAL	27.988511	-15.370892	8-9	38	15	0.38	24	2.94 ± 0.10	0.46 ± 0.08	0.47 ± 0.08	0.02
Arinaga	ARI	27.856621	-15.387634	10-12	35	31	0.88	22	2.57 ± 0.10	0.55 ± 0.04	0.50 ± 0.02	-0.17
Bahía Feliz	FEL	27.772601	-15.531574	8-10	39	33	0.84	24	2.65 ± 0.14	0.40 ± 0.07	0.45 ± 0.07	0.10
Medio Almud	ALM	27.802218	-15.744298	14-16	39	20	0.50	22	2.77 ± 0.19	0.40 ± 0.08	0.43 ± 0.09	0.07
Gui-gui	GUI	27.944705	-15.829258	14-15	39	36	0.92	24	2.84 ± 0.20	0.32 ± 0.06	0.46 ± 0.05	0.29 **
Tenerife												
Las Teresitas	TER	28.042198	-16.536313	14-16	37	25	0.67	21	2.58 ± 0.16	0.38 ± 0.08	0.39 ± 0.08	0.01
Bahía Poris	BAP	28.163632	-16.430848	7-9	40	23	0.56	22	2.58 ± 0.12	0.44 ± 0.13	0.37 ± 0.08	-0.18 **
Granadilla-I	GI	28.047275	-16.526762	12-14	36	33	0.91	25	2.78 ± 0.15	0.45 ± 0.08	0.44 ± 0.07	-0.10
Granadilla-II	GII	28.047932	-16.526032	12-14	40	39	0.97	31	3.11 ± 0.17	0.45 ± 0.06	0.50 ± 0.07	0.06 **
Granadilla-III	GIII	28.051048	-16.522233	12-14	40	29	0.72	27	3.11 ± 0.15	0.46 ± 0.11	0.44 ± 0.09	-0.06 **
Granadilla-IV	GIV	28.051856	-16.521631	12-14	39	36	0.92	26	3.03 ± 0.20	0.42 ± 0.07	0.45 ± 0.08	0.02 *
Granadilla-V	GV	28.061680	-16.510684	8-9	40	33	0.82	28	2.95 ± 0.20	0.47 ± 0.07	0.48 ± 0.07	-0.02 *
Granadilla-VI	GVI	28.061853	-16.511658	8-9	39	26	0.66	22	2.49 ± 0.16	0.34 ± 0.08	0.41 ± 0.08	0.12 *
Granadilla-VII	GVII	28.058823	-16.516277	8-9	39	29	0.74	25	2.88 ± 0.16	0.42 ± 0.10	0.45 ± 0.09	0.03 *
Granadilla-VIII	GVIII	28.059309	-16.517293	8-9	38	31	0.81	25	2.92 ± 0.16	0.46 ± 0.07	0.46 ± 0.07	-0.07
El Medano	MED	28.043133	-16.535957	7-8	36	34	0.94	27	3.02 ± 0.17	0.35 ± 0.09	0.45 ± 0.09	0.18 *
Los Cristianos	CRI	28.048311	-16.726315	12-13	39	27	0.68	19	2.24 ± 0.10	0.37 ± 0.05	0.40 ± 0.06	0.02
San Juan	JUA	28.178221	-16.813463	1	39	29	0.74	22	2.38 ± 0.17	0.30 ± 0.10	0.29 ± 0.09	-0.08
Los Gigantes	TEN	28.312464	-16.881212	14-16	40	9	0.21	16		0.50 ± 0.16	0.33 ± 0.10	-0.56 *
La Gomera												
El Cabrito	CAB	28.053141	-17.150794	12,5-14,5	40	37	0.92	22	2.20 ± 0.16	0.25 ± 0.10	0.27 ± 0.10	0.05
Ringamede	RIN	28.048953	-17.298900	12-14	40	28	0.69	17	2.19 ± 0.15	0.32 ± 0.13	0.28 ± 0.10	-0.17 **
El Hierro												
La Estaca	EST	27.784576	-17.899713	15,5-17,5	40	17	0.41	15	1.81 ± 0.08	0.48 ± 0.13	0.32 ± 0.08	-0.51 *

Otro parámetro importante de diversidad genética es la heterocigosidad esperada (Hexp) a nivel de los MLGs, cuyos valores mínimo y máximo para Canarias se detectaron en El Cabrito (La Gomera) con 0.27 y varias localidades con 0.5: FV en Jandía (Fuerteventura), Arinaga (Gran Canaria) y GII en Granadilla (Tenerife).

Por islas, en Fuerteventura se detectaron los valores mínimo y máximo en la pradera de Jandía, concretamente en la localidad FII (Hexp = 0.31) y FV (Hexp = 0.5), respectivamente. En Lanzarote, la localidad de Arrieta (Hexp = 0.3) y Puerto del Carmen (Hexp = 0.43) obtuvieron el mínimo y máximo. Las localidades de Las Canteras (Hexp = 0.28) y Arinaga (Hexp = 0.5) obtuvieron los valores extremos en la isla de Gran Canaria. En Tenerife, los valores de heterocigosidad esperada alcanzan sus valores máximos en GII en Granadilla (Hexp = 0.5). Sin embargo, el mínimo lo encontramos en San Juan (Hexp = 0.29). La Gomera y El Hierro obtuvieron valores similares donde se calculó el mínimo en la localidad de El Cabrito (Hexp = 0.27) y el máximo en La Estaca en El Hierro (Hexp = 0.32).

Este rango estrecho de valores de heterocigosidad sobre una representación tan grande de poblaciones indicó que los niveles de homocigosidad fueron bajos para la especie en el archipiélago.

En todas las islas se detectaron poblaciones fuera del equilibrio Hardy-Weinberg (ver tabla 1). Tenerife fue la isla con mayor número de poblaciones fuera del equilibrio con Bahía del Porís, las cuadrículas GII hasta GVII de Granadilla, El Médano y Punta Teno. Estas salidas del equilibrio fueron debidas a un exceso significativo de heterocigotos en los valores negativos de la tabla y las restantes, con valores positivos, a un déficit de heterocigotos (ver valores de FIS en la tabla 2). Los valores positivos de FIS mayores podrían indicar un posible efecto de la consanguinidad en las localidades de El Médano, en Tenerife, y Güi-Güi, en Gran Canaria. Para el resto de FIS positivas, los niveles de homocigosidad son bajos y la consanguinidad no parece ser tan importante.

2 DIFERENCIACIÓN INTERPOBLACIONAL

La mayoría de localidades estuvieron genéticamente diferenciadas entre sí tanto con un nivel de significación de 0.05 (figura 6) y, por lo tanto, se rechazó la hipótesis nula de distribución alélica igual entre poblaciones. Se pueden observar las localidades cuya diferenciación no fue significativa, tratándose de muestras situadas dentro de praderas o sebadales muy extensos, como fue el caso de Jandía, en Fuerteventura, y Granadilla, en Tenerife, y la excepción del par Costa Teguise-Puerto del Carmen, en Lanzarote, cuyos sebadales aunque no estén en contacto directo son localidades próximas.

Tabla 2: Análisis jerárquico de la varianza molecular (AMOVA) usando como grupos las localidades de una misma isla (a excepción de la localidad de La Estaca en la isla de El Hierro que se unió a la Gomera a tratarse de una sola muestra). **** p < 0.001.

Fuer	nte de variación	d.f.	Suma de cuadrados	Componentes de varianza	% de variación	Índices de Fijación		
Entre grupos (i	islas)	4	288.735	0.16678	8.36	$\theta_{\rm CT} = 0.084^{***}$		
Entre poblacion	nes dentro de grupos	35	464.298	0.24656	12.37	$\theta_{SC} = 0.135^{***}$		
Entre individuo	os							
	dentro de poblaciones	926	1.408.203	-0.05977	0	f = -0.038 n.s.		
Total		1931	3745.736	1.99384				

El análisis jerárquico AMOVA utilizando el total de datos del archipiélago (Tabla 2) mostró que el mayor porcentaje de la variación genética detectada estaba significativamente distribuido entre las localidades de una misma isla (12%) comprendidas entre 0.1-119 km de distancia. Aunque no mucho mayor al porcentaje de variación significativamente distribuido entre islas (8%) con distancias comprendidas entre 15.33 y 469.97 km de distancia.

Cuando se realizó el mismo tipo de análisis jerárquico AMOVA sólo para los datos de Tenerife (Tabla 3), utilizando como regiones el conjunto de localidades igualmente orientadas a la línea de costa se encontraron resultados semejantes donde el mayor porcentaje de la variación genética detectada estaba significativamente distribuido entre las localidades de una misma orientación hacia la línea de costa (8%) con distancias comprendidas entre 0.1-62.56 km, mientras que un porcentaje menor, aunque estadísticamente significativo, de variación detectado se distribuyó entre las dos orientaciones de la línea de costa de Tenerife (6%; SE-SW) con distancias entre 24.5-119.114 km. Sin utilizar estos niveles jerárquicos y analizando la distribución de la variación genética entre las localidades de Tenerife, los resultados del AMOVA apoyaron los tests de significación realizados sobre los *F*ST, dando como resultado que el mayor porcentaje de variación (10%) se distribuye entre localidades (*F*ST = 0.10468, p<0.001).

Tabla 3: Análisis AMOVA con 3 niveles jerárquicos, usando como grupos las localidades con la misma orientación sobre la línea de costa en la isla de Tenerife: Orientación SE (TER, BAP, GI-GVIII, MED), SW (CRI, JUA, TEN); y con 2 niveles jerárquicos. *** p < 0.001, n.s.: no significativo.

		Suma de	Componentes de	% de	
Fuente de variación	d.f.	cuadrados	varianza	variación	Indices de Fijación
Entre grupos (SE/SW)	1	33.333	0.1078	5.69	$\theta_{\rm CT} = 0.057^{***}$
Entre poblaciones dentro de grupos	12	128.932	0.15845	8.40	$\theta_{SC} = 0.089^{***}$
Entre individuos					
dentro de poblaciones	389	623.462	-0.01687	0	f = -0.010
Total	805	1.445.226	188.523		y one is
Entre poblaciones	13	163.01	0.19148	10.46830	$\theta_{\rm ST} = 0.105^{***}$
Entre individuos					
dentro de poblaciones	389	630.500	-0.00731	0	f = -0.004 n.s.
Total	805	1453.072	1.82916		

En la figura 5 se pueden visualizar los valores del estimador θ de FST entre los pares de localidades del archipiélago. Los valores mínimo y máximo del total se dieron entre 2 localidades de la pradera de Jandía FI y FVII en Fuerteventura (θ = -0.006) y entre 2 las localidades de Arrieta, en Lanzarote, y El Cabrito, en La Gomera, (θ = 0.589) respectivamente.

Entre las cuadrículas de Granadilla y el resto de localidades analizadas de otras islas muestran, para Lanzarote un mínimo entre GII y Puerto del Carmen (θ = 0.075) y un máximo entre GI y Arrieta (θ = 0.291); para Fuerteventura el mínimo y el máximo se detectaron entre GV y FV (θ = 0.075) y entre GIII y FII (θ = 0.330) respectivamente; para Gran Canaria el mínimo y el máximo se detectaron entre GIV y Bahía Feliz (θ = 0.034) y entre GVIII y Las Canteras (θ = 0.261) respectivamente; para La Gomera el mínimo y el

máximo se detectaron entre GII y El Cabrito (θ = 0.219) y entre GVIII y El Cabrito (θ = 0.338) respectivamente. Finalmente, en El Hierro la localidad de La Estaca obtuvo un valor mínimo entre ésta y GIV (θ = 0.104) y el máximo pareada con GIII (θ = 0.192).

En Tenerife, los valores mínimo y máximo de θ entre las localidades de Granadilla y el resto de localidades de la isla se dieron entre GII y El Médano (θ = 0.019) y entre GVI y Bahía del Porís (θ = 0.338). Dentro de la pradera de Granadilla los valores del estimador θ de *F*ST oscilaron entre GII y GIV (θ = -0.003) y entre GIII y GVIII (θ = 0.090).

Estos valores del estimador θ de FST entre los pares de localidades del archipiélago mostraron que los valores extremos pueden ser parecidos aunque las localidades se encuentren en islas diferentes. Sin embargo, la distribución de las localidades de las Islas Canarias dentro del espacio creado por el modelo estadístico del escalamiento multidimensional (Figura 4) en base a los valores del estimador θ de FST, permite visualizar que la mayoría de las poblaciones se agrupan por islas y la distribución de estos grupos queda estructurada por el eje geográfico NE-SW desde las islas orientales hacia las occidentales y por lo tanto, creando una estructura genética (estrés = 0.19) coherente aunque hubiera algunas excepciones, como la localidad de bahía de Porís y Teno en Tenerife o Arrieta en Lanzarote por ejemplo, que podrían justificarse por efectos locales.

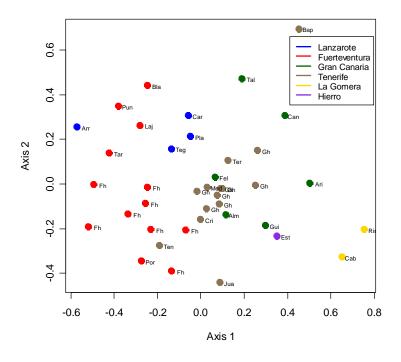


Fig. 4: Representación gráfica del escalamiento multidimensional (MDS) para las localidades de *Cymodocea nodosa* del archipiélago canario. Estrés = 0.19.

Se detectó un patrón de aislamiento por la distancia fuertemente significativo, es decir, hubo una relación directa entre la distancia genética y la geográfica (R = 0.36, p < 0.001, Mantel test) del conjunto de localidades del archipiélago canario (Figura 6a) y de la isla de Tenerife (R = 0.41, p = 0.005, Mantel test) (Figura 6b).

	ARR TEG	CAR	PLAY I	POR BLA	TAR	LAJ	FI.	FII	FIII	FIV	FV	FVI	FVII.	FVIII	PUN	CAN	TAL	ARI	FEL	ALM	GUI	TER	BAP	GI	GII	GIII	GIV	GV	GVI	GVII	GVIII	MED	CRI .	JUA T	EN C	AB RI	N
TEG	0,192	- 17				7-7		-		9 1						1									-			7									
CAR	0,243 0,067	7																																			
PLAY	0,201 0,138	8 0,185																																			
POR	0,316 0,180	0 0,134	0,215							1																											
BLA	0,150 0,163	3 0,211	0,139	0,248																																	
TAR	0,184 0,157	7 0,195	0,095	0,198 0,110						1																											
LAJ	0,111 0,112	2 0,120	0,151	0,171 0,087	0,108																																
FL	0,235 0,124	4 0,157	0,167	0,132 0,200	0,098	0,145				1																											
FII	0,261 0,314	4 0,308	0,173	0,246 0,198	0,076	0,223	0,131																														
FIII	0,229 0,192	2 0,174	0,244	0,276 0,245	0,179	0,180	0,103	0,228	6	1																											
FIV	0,333 0,198	6 0,191	0,192	0,134 0,231	0,137	0,184	0,033	0,205	0,221																												
FV	0,166 0,077	7 0,115	0,174	0,135 0,155	0,115	0,108	0,038	0,161	0,128	0,057																											
FVI.	0,280 0,222	2 0.215	0,243	0,174 0,211	0,170	0,191	0,092	0,162	0,214	0.049	0,058																										
FVII	0,229 0,150	0 0,176	0,199	0,133 0,213	0,111	0,153	-0,008	0,111	0,124	0,042	0,025	0,050																									
FVIII	0,396 0,293				1	200	-	-			100000000000000000000000000000000000000																										
PUN	0.219 0.175	5 0.171	0.270	0.181 0.130	0.182	0.078	0.134	0.254	0.204	0.150	0.094	0.138	0.133	0.281																0.00							
CAN	0,429 0,299	9 0,325	0,228	0,376 0,239	0,258	0,280	0.244	0,427	0,323	0,241	0,248	0,349	0,322	0,373	0,269																						
TAL	0,296 0,174	4 0.087	0.217	0.166 0.225	0.231	0.124	0.232	0.360	0.283	0.192	0.177	0.237	0.252	0.327	0.168	0.277																					
ARI	0,317 0,260	and the second second	and the second second	Commence of the Commence of th	-	-	-	-	-	and the same and the same and	-		-				0,177																				
FEL	0.215 0.113	3 0.111	0.086	0.171 0.174	0.157	0.143	0.118	0.208	0.167	0.097	0.110	0.128	0.142	0.149	0.199	0.186	0.119	0.096																			
ALM	0,257 0,175	5 0,178	0,130	0,152 0,178	0,171	0,126	0,098	0,222	0,190	0,072	0,129	0,145	0,135	0,149	0,138	0,130	0,144	0,148	0,058																		
GUI	0.327 0.179	9 0.195	0.201	0.185 0.231	0.253	0.219	0.123	0.297	0.238	0.102	0.148	0.199	0.170	0.172	0.187	0.148	0.213	0.149	0.109	0.062			1														
TER	0,305 0,110	0 0,158	0,128	0,214 0,198	0,167	0,184	0,115	0,289	0,209	0,090	0,119	0,186	0,169	0,192	0,207	0,083	0,159	0,178	0,049	0,074	0,093																
BAP	0.447 0.300	0.246	0.268	0.346 0.249	0.261	0.302	0.334	0.429	0.391	0.313	0,295	0.376	0,385	0.433	0.314	0.252	0,199	0.264	0.237	0,288	0.287	0.206															
GI	0,291 0,147	7 0.169	0.176	0.202 0.202	0.265	0.210	0.208	0.327	0.298	0.162	0.148	0.181	0.225	0.237	0.237	0.237	0.169	0.112	0.073	0.139	0.119	0.115	0.278														
GII	0.241 0.090					-	-				-	-	-					-	-	-				0.039													
GIII	0,270 0,138				-		-				-			-	-		-	-		-	-	-	-	-		1											
GIV	0.245 0.082	100000000000000000000000000000000000000			and the second second	-	-			-	-		and the second		-			-			-	and the second second			and the same of the		1										
GV	0,223 0,086	6 0.114	0.150	0.147 0.163	0.201	0.148	0.115	0.245	5 0.194	0.094	0.075	0.102	0.128	0.160	0.153	0.203	0.154	0.121	0.046	0.090	0.082	0.074	0.271	0.019	0.010	0.056	6 0.000)									
GVI	0.234 0.135	in the second		the second second second	-	-			-	the second second			-	-			-	with the second second	-	-	and the second second	-	and the same of the same		and the second second	the second second		0.00	4								
GVII	0.185 0.114	**				-		-	-	the second second	-	-	-	-			-	-	-	-	-			-		-	_	-	-	3					-		
GVIII	0.220 0.128					-	-	-		-	-	-	-	-			-	-	-	-	-				-	the second second second		-	-	100000							
MED	0.263 0.088				-		-	-		the second second	-	-	-	-				-	and the second section of the second	-	-						-	the state of the later	-	-	-				- 1		
CRI	0,257 0,185					-				-	-	and the last transfer		-	-	-	-	-	-	Andrew Street	-		-		-		-		-		-	0.085					
JUA	0.331 0.242				-			-		-	-	-		-	-			-		-	-				-		-										
TEN	0,290 0,219	and the second second	and the second second	Contracting the second	And the local party of the local division in	-	-		-	-	-		Andrew Street, Street, St.	-		-	-	and the same of the party	-	-		-	-	-	-	and the second sections of	Personal Property Street, Stre	-	And the last of th				approximate and the	0.241			
CAB	0,589 0,468	101/2014	A CONTRACTOR			-			-	-					-			-	-	-		-			-	-			-		-	-		-	393		_
RIN	0,585 0,451	the second second	and the second second	Commence of the Commence of th	-	-				and the later of t		and the second	-		-	-	-	-		-	A STATE OF THE PARTY OF THE PAR				and the second second		the section of the section	-	the section of the last		A STATE OF THE PARTY.	-		Contract Con	-	0.157	
EST	0,421 0,304			The state of the s		-				-	-	-	-				-	-		-		_			-			-				-		and the second			220

Fig. 5: Valores del estimador θ de FST entre los pares de localidades de Cymodocea nodosa del archipiélago canario. Valores en color negro fueron significativos (p<0.05), los valores de color naranja no fueron significativos.

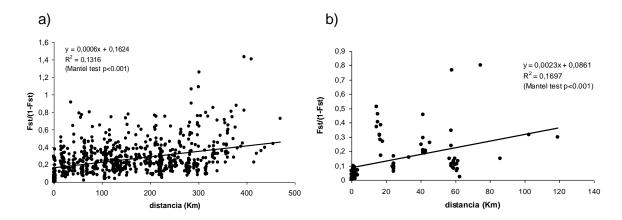


Fig. 6: Aislamiento por distancia (IBD) para las localidades de *Cymodocea nodosa* analizadas a) de las islas Canarias y b) de Tenerife. Los puntos representan pares de valores de distancia genética y geográfica entre localidades de muestreo. También están representados los valores de la regresión estimados de la pendiente, intercepto y R², además del *p*-valor del test de Mantel (Mantel, 1967).

El número de migrantes por generación ($N_{\rm e}$ m) calculados para diferentes escenarios respecto a las localidades de la isla de Tenerife se muestran en la tabla 4. Cuando consideramos todas las localidades en el análisis, el valor de $N_{\rm m}$ casi duplicó al calculado cuando eliminamos las localidades de la pradera de Granadilla. Por lo tanto, la presencia de esta pradera tuvo un efecto claro sobre el número de migrantes que conectan las poblaciones. El valor más elevado se encuentra dentro de la pradera de Granadilla ($N_{\rm e}$ m = 5.62).

Tabla 4: Estimaciones indirectas del flujo genético

$(N_{\rm e}$ m) calculados a partir de θ		
Escala espacial	θ	$N_{\rm e}$ m
En Tenerife	0.134	1.616
En Tenerife sin Granadilla	0.217	0.902
En Granadilla	0.043	5.624

Las representaciones gráficas del análisis de agrupamiento neighbour joining por islas confirmó esta hipótesis y en la figura 7 se pueden observar grupos divergentes significativos formando agrupaciones entre las islas orientales por un lado y las islas occidentales por otro, apoyados fuertemente (92% bootstrap). La isla de Tenerife estaría agrupada de un modo más leve con La Gomera y El Hierro (71% bootstrap) y Gran Canaria, aunque con una afinidad genética muy baja (100% bootstrap), quedaría agrupada por un lado con Tenerife y las islas occidentales y con Lanzarote y Fuerteventura por otro. Entonces, a lo largo de las islas Canarias se encontró una estructura definida siguiendo un eje NE-SW desde las islas orientales hasta las islas occidentales. Así, quedaron definidos 3 grandes grupos en base a las frecuencias alélicas. El primer grupo estaría formado por las islas de Lanzarote y Fuerteventura, el segundo formado por Gran Canaria y Tenerife y el último quedaría definido por las islas occidentales de La Gomera y El Hierro.

13

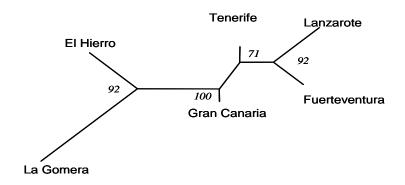


Fig. 7: Representación del análisis neighbour-joining sobre las 6 islas basado en la distancia D_c de Cavalli-sforza y Edwards (1967).

Dentro de estos grupos se crearon varios subgrupos definidos aunque con agrupamientos levemente apoyados por los valores de bootstrap y el nivel de estrés creado por el modelo en el MDS. Sin embargo, las representaciones gráficas del análisis de agrupamiento neighbour joining y el análisis multiescalar MDS por localidades de muestreo obtuvieron resultados similares (Fig. 8 y Fig. 4). Así, las localidades de cada isla podrían formar unidades agrupadas pero con divergencias genéticas bajas entre ellas y por lo tanto, dicha estructura genética a lo largo del archipiélago fue baja o moderada; como mostraron los bajos valores obtenidos en los bootstrap que, salvo los enlaces creados entre las localidades de muestreo GI y GIII en Granadilla (50% bootstrap) y entre las localidades de La Gomera (78% bootstrap), nunca alcanzaron el 50% bootstrap (ver Figura 8).

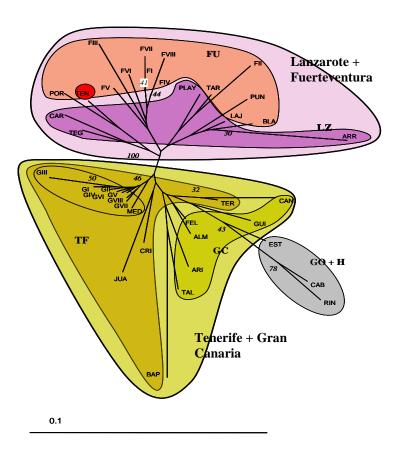


Fig. 8: Representación del análisis neighbour-joining sobre las localidades de *Cymodocea nodosa* en las islas canarias, basado en la distancia D_c de Cavalli-sforza y Edwards (1967).

Finalmente, la representación gráfica del análisis de agrupamiento neighbour joining en Tenerife muestra 3 grupos aunque pobremente apoyados por lo valores de los bootstrap creados en el análisis (Fig. 9). El primero de ellos estuvo formado por Las teresitas, El Médano y Granadilla como subgrupo principal unido a Los Cristianos de forma más débil (Fig. 9. El segundo grupo estuvo formado por los sebadales de San Juan y Punta Teno. Finalmente, el tercer grupo encontraríamos el sebadal de la bahía del Porís muy alejado del resto de poblaciones.

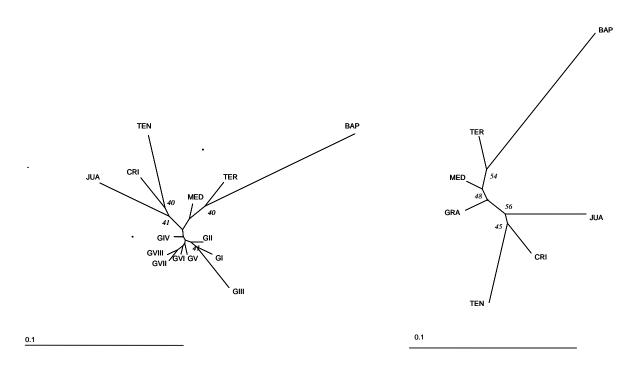


Fig. 9: Representación del análisis neighbour-joining sobre las localidades de *Cymodocea nodosa* en Tenerife basado en la distancia D_c de Cavalli-sforza y Edwards (1967).

4. DISCUSIÓN Y CONCLUSIONES

Normalmente, los programas de introducción, reintroducción y traslocación (ver definición de conceptos en Moritz, 1999) parten de la premisa de recuperar poblaciones degradadas, desaparecidas o crear nuevas donde antes no las hubo, a partir de las cuales los restauradores genéticos establecen criterios de selección de poblaciones diana para donar material vegetal. Además, la preocupación principal y tema debatido ampliamente es la correcta elección de esta fuente de origen del material vegetal donante y el taxón elegido (Falk et al. 2001; Montalvo et al., 1997; Lesica y Allendorf 1999, Leberg, 1993; Rogers y Montalvo, 2004).

Sin embargo, en nuestro caso ocurre lo contrario porque conocemos de antemano que la zona donante de material a trasplantar se sitúa en el sebadal de Granadilla, la especie es *C. nodosa* y nuestro objetivo es determinar una correcta elección de posibles zonas receptoras desde el punto de vista genético.

Así, el presente estudio pretende obtener unas directrices genéticas concretadas en acciones que: (1) restauren e intenten conservar los procesos microevolutivos que tienen la capacidad de responder satisfactoriamente a la presión selectiva del ambiente a través de la

presencia de variación genética (Bowen, 1999; Falk et al., 2001; Frankel 1974; Moritz, 1999) y (2) eviten los efectos perjudiciales potenciales asociados al movimiento de individuos entre poblaciones, que podrían ocurrir si el trasplante fuera realizado sin tener en cuenta las sugerencias que aquí se contemplan.

Hay dos conceptos importantes en restauración genética que deberían explicarse previamente para enmarcar las consideraciones tomadas en el presente estudio: la *fidelidad* de un proyecto de restauración y su *funcionalidad* (Clewell, 2000). Una restauración es genéticamente fiel ("auténtica") cuando se replica el complejo genético original de la población que se quiere reponer (Falk et al., 2001). Sin embargo, también hay que aclarar que una restauración puede ser fiel pero funcionalmente pobre, o al contrario, podría ser funcional pero no tener ninguna fidelidad.

Por lo tanto, en el presente caso la restauración debería intentar conseguir un máximo de fidelidad pero manteniendo unos niveles funcionales naturales que permiten un equilibrio en la dinámica ecológica entre las diferentes especies de flora y fauna que conforman la comunidad de *C. nodosa*.

Esta especie tiene un papel vital en los fondos someros arenosos de la zona litoral de Canarias en los que transforma un sustrato arenoso desprovisto de un manto vegetal con una vida empobrecida por la inestabilidad de los granos de arena, en un ecosistema estructuralmente complejo con una elevada biodiversidad y productividad, además de cumplir multitud de funciones y servicios en los fondos sedimentarios litorales en el archipiélago (ver Reyes, 1993). Otra característica, que da un valor crítico a la especie en Canarias, es ser la única fanerógama marina presente en las aguas someras litorales con tamaños poblacionales importantes y que además, desempeña servicios ecológicos que indirectamente dan beneficios a la sociedad a través del mantenimiento de los stocks de algunas especies de peces con interés pesquero.

CONSIDERACIONES DE TRASPLANTE EN CANARIAS

Concretamente, el sebadal de Granadilla es uno de los más extensos y continuos de Canarias junto al sebadal situado en la costa este de Jandía en Fuerteventura y el sebadal de Maspalomas en Gran Canaria. Por tanto, parece que *C. nodosa* desarrolla grandes extensiones en determinadas zonas litorales bajo unas condiciones ambientales y geomorfológicas de la línea de costa, así como con una extensión de plataforma continental que no debe encontrarse en demasiadas zonas litorales de Canarias. Por lo tanto, la pradera de Granadilla parece ser un sebadal muy importante y singular en Canarias.

Se cree conveniente que la zona donante y receptora deben compartir condicionantes ecológicos y su proximidad no tiene por que ser necesariamente geográfica, sino "ecológica". Consecuentemente, y bajo un marco evolutivo, si los genes regulan los procesos fisiológicos, las características del ciclo biológico y del comportamiento, tolerancia a condiciones ambientales extremas, capacidades de dispersión y colonización, etc. (Raven, Evert, y Eichhorn 1986). Y las estructuras genéticas de las poblaciones están en equilibrio dinámico con las variables o procesos ecológicos que las han creado y mantenido por efecto de la selección, es lógico pensar que esta premisa es acertada en cuanto a que podemos predecir que los individuos trasplantados presentan la aptitud de poder crecer y reproducirse en esas nuevas condiciones y posiblemente no alterará gravemente su estructura genética poblacional. Se encuentran numerosos ejemplos de esta problemática en la literatura (Proccacini y Piacci, 2001; Knapp y Rice, 1998).

Así, las zonas ocupadas por los sebadales en Canarias suelen compartir unas condiciones ecológicas mínimas semejantes que permiten el asentamiento de la especie. Normalmente *C. nodosa* se encuentra en costas semi-expuestas o abrigadas orientadas

hacia el SE o SW, colonizando sustratos arenosos principalmente en profundidades que generalmente oscilan desde los 2-5 m hasta los 30 m.

Si existen diferencias ecológicas entre las zonas donante y receptoras, lo más probable es que se deban a una heterogeneidad ambiental que podría desencadenar diferentes ecotipos en la especie, como las condiciones oceanográficas y las corrientes predominantes en el archipiélago, así como diferencias en temperatura entre las islas más orientales (con aguas ligeramente más frías) y las occidentales (ligeramente más cálidas) que podrían causar fenómenos de adaptación local, aislamientos poblacionales y/o divergencias genéticas entre poblaciones.

Por otro lado, el éxito del trasplante es el objetivo crítico de la restauración y se consigue cuando las poblaciones están restauradas en un nivel que les permite persistir como partes dinámicas de la metapoblación (consiste en grupos de pequeñas poblaciones parcialmente aisladas entre si, es decir, tienen un aislamiento en términos de tiempo ecológico pero que se mantienen conectadas en un tiempo evolutivo) a largo plazo a través de un ambiente cambiante (Montalvo et al., 1997).

Por lo tanto, ante la necesidad de tomar una unidad de referencia filogeográfica en la cual pueda enmarcarse a la especie en el archipiélago como una metapoblación y en base a la separación significativa de Canarias del resto de grupos creados en el rango de distribución de *C. nodosa* (Alberto et al., *In press*); el archipiélago podría definirse como una Unidad Significativa de Evolución (ESU) (ver ESU en Moritz, 1994). Es decir, las diferentes poblaciones de la especie en las islas Canarias funcionarían mantienen conexiones a través de procesos microevolutivos de colonización y extinción natural, el grado de conexión entre las diferentes poblaciones y su estructura genética. Por lo tanto, nuestra atención principal es entender el papel que juega el sebadal de Granadilla como parte integrante de la dinámica metapoblacional de la especie en Canarias.

La correlación detectada entre la distancia genética y la distancia geográfica indica una tendencia en la que aumenta su diferenciación sobre las frecuencias alélicas poblacionales en relación con la distancia de separación entre poblaciones del archipiélago. Además, las representaciones creadas a partir del análisis neighbor-joining (Fig.8) se apoyan en la distribución de los grupos creados en el MDS (Fig.4) sobre las localidades de Canarias. Consecuentemente, la estructura genética en el archipiélago parece que no es acentuada, pero sí suficiente como para promover un mayor agrupamiento entre las poblaciones de una misma isla o entre islas cercanas creando similitudes filogeográficas en un eje NE-SW. Es decir, la distancia geográfica entre las localidades de diferentes islas (y no tiene porque dentro de una misma isla) parece tener una relación con su grado de proximidad genética. Esta divergencia genética entre poblaciones podrían indicar un riesgo al mover individuos entre tales poblaciones y que estos nuevos genotipos introducidos tengan adaptaciones pobres para el lugar de trasplante (Hufford y Mazer, 2003). Con lo cual, se considera que para el presente caso sería un esfuerzo enorme innecesario y desperdiciado sin saber a priori la garantía de éxito.

Por otro lado, los valores significativos del estimador θ de FST que estiman el grado de diferenciación genética entre los pares de localidades del archipiélago, apoyan esta hipótesis y expresan diferencias genéticas entre localidades significativas. No obstante, la menor diferenciación genética altamente significativa entre islas detectada por el AMOVA indica un mayor flujo genético entre islas. Sin embargo, las estimas de los F estadísticos asumen unas condiciones teóricas de la genética de poblaciones como son unas condiciones de equilibrio. Por ello, modelos teóricos indican que son necesarias centenares de generaciones para conseguir alcanzar dicho equilibrio y que hasta entonces el flujo genético depende en gran medida de esta distribución.

Así, al encontrar numerosas localidades en las islas Canarias fuera del equilibrio de Hardy-Weinberg (modelo teórico ideal para testar las bases teóricas aplicadas a la genética de poblaciones y que asume condiciones teóricas poco usuales en la naturaleza), otros factores que explican las relaciones entre el ambiente marino y la biología de la especie, explicarían la mayor conectividad genética entre islas que dentro de una propia isla.

Por lo tanto, apuntando al éxito del posible trasplante que incluye también valoraciones prácticas (ver también más adelante) respecto al esfuerzo y coste que implica un programa de restauración, todo apunta a que la isla de Tenerife es la más viable para encontrar una región receptora.

Para evitar posibles confusiones de cercanía geográfica, merece atención la isla de La Gomera, aparentemente tan cercana a Tenerife desde el punto de vista geográfico y tan diferente y divergente desde el punto de vista genético. Este hecho puede observarse en los grupos creados en el análisis neighbor-joining (Fig. 8) y en el MDS (Fig.4), así como los elevados valores de θ encontrados, justifican una diferenciación poblacional muy grande entre los sebadales de esta isla y prácticamente el resto de los sebadales de Canarias. Así, el parámetro θ que explica dicha diferenciación en base a comparaciones sobre las frecuencias alélicas de las poblaciones, indica que existe la misma o menor diferenciación entre los sebadales de Gran Canaria (exceptuando Las Canteras y Taliarte) y los de La Gomera que entre éstos últimos y cada una de las localidades muestreadas en Granadilla.

Este fenómeno responde, posiblemente, a:

barreras geográficas marinas, como podrían ser corrientes locales en el canal entre La Gomera y Tenerife, que han permitido crear un grado de aislamiento tal que podría indicar que los procesos evolutivos podrían influir a otro ritmo en esta zona,

condiciones ambientales naturales estresantes que rigen la dinámica poblacional en La Gomera y que caracterizan la diversidad alélica encontrada además de los niveles de heterocigosidad. Por lo que no se debería traslocar material vegetal entre Granadilla y los sebadales de La Gomera, para no alterar esta composición genética, tan particular dentro del archipiélago y mantener los niveles de distribución genética naturales que le han propiciado tales características genéticas.

CONSIDERACIONES DE TRASPLANTE EN TENERIFE

Hasta ahora se ha refutado la idea de trasplantar a otras islas y de aquí en adelante se va a caracterizar la pradera de Granadilla, intentar determinar su viabilidad como fuente donante de material vegetal para trasplantar en Tenerife y entender el grado de conexión que existe entre los sebadales de esta isla para descartar o sugerir posibles praderas receptoras.

La pradera de Granadilla mostró unos niveles de riqueza alélica elevados en comparación con el resto de localidades analizadas del archipiélago, aún teniendo en cuenta que el número de individuos y zonas muestreadas en ésta es mucho más elevado que en aquellas. Una herramienta efectiva para reflejar esta potencialidad de las poblaciones de plantas para adaptarse a nuevos cambios estocásticos, es la diversidad genética medida en términos de riqueza alélica, ya que podría ayudar de un modo más rápido a la recuperación de poblaciones degradadas. Por lo tanto, este sebadal ofrece un gran reservorio genético muy importante a nivel de todo el archipiélago y sin duda alguna para los sebadales de Tenerife. Además, la gran representatividad de alelos exclusivos y raros detectados en Granadilla hacen que sea la población con mayor potencial evolutivo del archipiélago y por lo tanto, con mayor capacidad de adaptación ante ambientes cambiantes.

Estas características hacen que Granadilla sea un sebadal indicado para trasplantar material vegetal hacia otros sebadales de Tenerife. Su elevada diversidad genética basada en todos los descriptores de variación poblacional analizados (ver tabla 1) sugieren que potencialmente podría ayudar a aumentar los niveles de diversidad genética de los sebadales con tamaños poblacionales pequeños causados por extinciones recientes (por grandes temporales esporádicos) o regresiones (por fragmentación del hábitat). Además, si el efecto de estos tamaños aumentará su aislamiento genético con respecto a las poblaciones vecinas, podrían llegar a ser más susceptibles a depresiones endogámicas por consanguinidad.

Por otro lado, también podría ofrecer una mayor capacidad para restaurar sebadales con ambientes degradados, aunque no se podría conocer si sus niveles de diversidad serían los suficientes para acometer tal fin. Entonces, no se recomienda tal práctica ya que podría poner en peligro el éxito del trasplante y que el gran esfuerzo realizado no se viera recompensado. Sin embargo a modo de orientación teórica, Lesica y Allendorf (1999) sugieren diferentes niveles de actuación sobre la restauración de praderas degradadas dependiendo del grado y el tiempo de permanencia de la perturbación. Así, estos autores argumentan que la restauración a través de genotipos locales sería una elección deseable en zonas donde el grado de perturbación ha sido leve y por lo tanto el ambiente de la zona receptora no ha variado mucho en comparación con el que había antes de la perturbación. Por el contrario, en zonas que han sufrido una perturbación muy fuerte o muy reciente en el tiempo, maximizar la cantidad de variabilidad genética a partir de material vegetal que caracterice heterogeneidad ecológica y por consiguiente diferentes ecotipos sería una opción esperanzadora para alcanzar el éxito a pesar de sacrificar adaptación local.

Además, el presente informe no contempla estudios de monitorización sobre parámetros demográficos o estudios de viabilidad poblacional sobre los sebadales en Tenerife que puedan mostrar si los tamaños poblacionales de *C. nodosa* están en regresión en algunos sebadales que potencialmente podrían ser receptores del material vegetal proveniente de Granadilla. Por lo que la base para aconsejar zonas receptoras será exclusivamente genética.

Así, un parámetro genético poblacional que cuantifica la consanguinidad de los individuos en relación al área, localidad o población muestreada es el índice de fijación de Wright Fis (Wright, 1931). Si su valor es positivo, la población tiene un déficit de heterocigotos, que puede ser debido a la consanguinidad y consecuentemente, indicar síntomas regresivos en los tamaños poblacionales. Por tanto, en base a esta premisa, la variación genética detectada con microsatélites en el sebadal de Granadilla no parece que pueda resolver problemas de efectos fundadores ni de consanguinidad acusados en los sebadales, si atendemos a los valores de Fis de las poblaciones de Tenerife, ya que el único valor positivo que podría indicar problemas de consanguinidad se ha detectado en el sebadal de El Médano aunque no es alarmante. Por otro lado, el sebadal de San Andrés parece haber disminuido gravemente sus tamaños poblacionales durante los últimos años por causas antrópicas que deberían analizarse para afrontar con éxito una decisión de trasplante hacia esta zona.

En este sentido, el trasplante de Granadilla hacia El Médano o Las Teresitas podría beneficiarlos desde un punto de vista genético que, con el tiempo, podría dar lugar a una recuperación de los tamaños poblacionales.

En concordancia con Alberto et al. (2006), nuestros datos indican que las localidades de *C. nodosa* analizadas en Tenerife se encuentran genéticamente diferenciadas. Las orientaciones de las costas donde se distribuyen las poblaciones de esta isla, en combinación con las corrientes marinas que las afectan pueden ser los factores principales que expliquen la distribución desigual de los alelos detectados. Así, parece existir una

tendencia respecto a la relación que se da entre la agrupación formada en el cluster y la orientación de las poblaciones analizadas en la isla de Tenerife. El primer grupo lo formarían los sebadales orientados hacia el SE y el grupo 2 lo formarían los sebadales orientados hacia el SW. En general, el grado de conectividad detectado entre todas las poblaciones de Tenerife parece responder a niveles de flujo génico considerables; en particular, los valores del estimador θ de FST entre pares de poblaciones sugieren que Granadilla mantiene unos niveles de diferenciación bajos o moderados con el resto de poblaciones, excepto con los sebadales situados en la bahía del Porís, Los Gigantes y San Juan, genéticamente más divergentes y que podrían reflejar cierto aislamiento genético y evolución por deriva, tal vez por la existencia de factores físicos que impedirían el contacto genético a través de estructuras de dispersión como el polen o las semillas.

Atendiendo a los análisis anteriores que explicarían la distribución de la variación genética interpoblacional en Tenerife, los sebadales situados en la bahía del Porís, Los Gigantes y San Juan podrían contener complejos genéticos que han evolucionado independientemente y en consecuencia, considerarlas como posibles zonas receptoras podría aumentar el riesgo de introducir genotipos no deseados y producir cambios no beneficiosos para ellas. Por lo tanto, estos sebadales no deberían considerarse en el posible trasplante debido a que la conexión entre las poblaciones a través del flujo genético es un indicador importante (Falk et al. 2001, Fonseca et al. 1998, Hedrick, 2005, Lesica y Allendorf, 1999) y decisivo a la hora de elegir la zona receptora.

No obstante, para el resto de localidades analizadas y teniendo en cuenta el patrón significativo de aislamiento genético explicado por la distancia geográfica detectado en Tenerife y los valores analizados de flujo genético sugieren que estos sebadales mantienen un contacto genético importante y el flujo genético sería la fuerza que mantendría la distribución de la variación genética. Así, el sebadal de Granadilla podría usarse para donar material vegetal hacia los sebadales con un mayor contacto como son, Las Teresitas, El Médano, Los Cristianos sin peligro aparente que pueda causar efectos perjudiciales a nivel genético.

Como punto final a considerar, algunos autores recomiendan distancias mínimas de muestreo entre individuos recolectados para maximizar la cantidad de variación genética (Hufford y Mazer 2003; Williams, 2001) para asegurar el éxito del trasplante como evitar efectos negativos a largo témino como podría ser el efecto de la consanguinidad sobre praderas receptoras degradadas con un tamaño poblacional pequeño asociado a unos niveles de variación genética bajos (Montalvo et al. 1997; Mckay et al., 2005; Falk et al, 2001; Hufford y Mazer 2003; Williams, 2001).

Como *C. nodosa* es una planta marina que mantiene un tipo de reproducción clonal, debería optimizarse la distancia mínima en la que los individuos sexuales dejan de estar emparentados y además, en el caso de plantas clonales como la especie en estudio esta distancia debe considerar también la distancia mínima para evitar recolectar el mismo individuo sexual, es decir, el mismo clon.

El análisis de autocorrelación espacial que se necesita para alcanzar tales objetivos no se presenta aquí, ya que necesita un muestreo específico, muy laborioso en el sebadal de Granadilla debido a su rango de profundidad con un número elevado de muestras, ya realizado en otras localidades: en el Mediterráneo y la bahía de Cádiz (Alberto et al., 2005) mucho más someras y en aguas tranquilas situadas en el interior de bahías protegidas. Los resultados de este estudio no son extrapolables a Granadilla por su lejanía filogeográfica (Alberto et al., *In press*) por lo que podría llevar a errores debido al comportamiento reproductor de la especie (es decir, si la población tiene un mayor número de clones "ramets" o, por el contrario, un mayor número de individuos sexuales "genets").

CONSECUENCIAS EVOLUTIVAS SOBRE EL TRASPLANTE DE GRANADILLA

La desaparición de una parte importante del sebadal de Granadilla por la construcción del puerto, podría llevar consigo unas alteraciones graves en la dinámica metapoblacional de los sebadales de Canarias en menor medida y atendiendo a un tiempo evolutivo más lento, pero que podrían llegar a ser muy graves y con consecuencias perjudiciales (quizás críticas) a corto plazo para la integridad y conectividad genética del sebadal en Granadilla. Esto es debido a que el conjunto de los análisis realizados en el presente estudio muestran que Granadilla juega un papel clave en el mantenimiento de los procesos microevolutivos (que han permitido crear la variación genética inicial probablemente de varios sebadales de Tenerife), ya que por sus elevadísimos niveles de variación genética en Canarias explicados anteriormente, hacen que seguramente Granadilla sea una de los sebadales más antiguos de Canarias y probablemente, gracias a su situación geográfica y a las condiciones ambientales estables (que han gobernado el litoral de Granadilla y que han propiciado su madurez reflejada en los parámetros genéticos que caracterizan a las poblaciones) han permitido sucesivas colonizaciones en diversas zonas del litoral tinerfeño a partir de esta población.

También se alterarían gravemente de los procesos que ocurren dentro de Granadilla y rompería los niveles de conectividad actuales aumentando el aislamiento genético entre las localidades de Tenerife. El flujo genético entre poblaciones fragmentadas y genéticamente divergentes ha sido una de las mayores preocupaciones en la restauración de poblaciones vegetales (Millar y Libby, 1989) porque la entrada de genotipos mal adaptados o inapropiados en poblaciones vegetales puede aumentar la probabilidad de producir una depresión exogámica (outbreeding depression) y romper adaptaciones locales sobre complejos genéticos coadaptados a las condiciones locales (Montalvo et al., 1997; Mckay et al., 2005; Lesica y Allendorf, 1999; Huffordy Mazer; Falk et al., 2001). Por lo tanto, Granadilla, como hemos podido comprobar, es muy importante porque mantiene unos niveles de conectividad entre las poblaciones de esta isla a través de un elevado flujo genético y que ha favorecido con un éxito evolutivo la estabilidad, viabilidad y persistencia a través de una integridad genética de las poblaciones de esta isla.

Además, la posible degradación sobre las condiciones ambientales que han propiciado a la especie en esta zona para desarrollar un sebadal tan extenso con el tiempo conllevarán consecuentemente, su mayor fragmentación y reducción del tamaño efectivo poblacional, causas suficientes para que se ponga en peligro la diversidad genética, tanto a nivel insular como del archipiélago de la especie.

Por lo tanto, desde el punto de vista de la gestión de especies naturales, dejaría de existir el gran potencial evolutivo que presenta dicho sebadal, tan importante desde el punto de vista de la restauración genética y que podría ser utilizado en diferentes programas de restauración futuros, que podrían ser necesarios para afrontar las principales causas de regresión de la especie a través de las actividades humanas, como pueden ser los vertidos industriales en el litoral, accidentes navales, anclaje de embarcaciones, construcciones costeras, playas artificiales o artes de pesca destructivas como el arrastre, presentes la mayoría de ellos en la zona litoral de las islas más pobladas como son Tenerife y Gran Canaria.

Por lo tanto, se debe asegurar, antes de llevar a cabo cualquier acción que pueda poner en peligro el sebadal de Granadilla, que se hayan evaluado con datos rigurosos, a ser posible publicados en revistas especializadas que muestren el éxito de los métodos de tras plante para la especie y que no quedan dudas al respecto. Además, intentar en la medida de lo posible realizar el trasplante en zonas cercanas. En caso contrario sería echar por la

borda todas las consideraciones tomadas en el presente estudio genético sobre su restauración y no serían realmente eficaces desde ninguna perspectiva real y posible.

Tampoco debe pasarse por alto el contexto ambiental actual donde va a llevarse a cabo el trasplante. Este factor debería considerarse desde dos puntos de vista: el primero, obviamente, responde a las necesidades ambientales particulares que necesita la especie para sobrevivir y reproducirse a lo largo del tiempo con éxito. Así, en estas zonas actualmente se conoce la presencia de *C. nodosa* y se sabe que su presencia en la zona es histórica y se remonta tiempo atrás. El segundo, por otro lado, se debería analizar si las condiciones naturales de los posibles sebadales receptores de material a trasplantar se han degradado o perturbado por actividades antrópicas y las condiciones ambientales actuales, o si estas condiciones físico-químicas del medio para mantener con éxito los tamaños poblacionales pasados, por el contrario, han menguado desde entonces por causas antrópicas ajenas a la dinámica natural de los ecosistemas marinos litorales canarios.

Simplemente, con estas palabras pretendemos alertar que unas directrices genéticas, por muy correctas que sean nunca podrán exitosas sino se cumple una premisa esencial en ecología de la restauración: garantizar la supervivencia y éxito reproductivo de la nueva población creada en el tiempo para que, a través de el trasplante, adquiera o recupere las capacidades y aptitudes para auto-mantenerse por si misma (es decir, persistencia, resistencia a cambios estocásticos y estabilidad).

A modo de resumen final, es lógico pensar desde un punto de vista práctico en mayor medida y desde la precaución, que el material vegetal utilizado en el posible trasplante proveniente del sebadal de Granadilla no se traslade a otras islas.

Por otro lado, considerando los sebadales analizados en el presente estudio dentro de la isla de Tenerife, se descartaría la opción de trasladarlo a los sebadales de la bahía del Porís o Punta Teno, estando ambas muy diferenciadas del resto de localidades de la isla con unas particularidades genéticas muy elevadas que podrían ser debidas a procesos de aislamiento genético y que podría anular el éxito requerido en restauración. Sin embargo, unas opciones viables de trasplante podrían ser los sebadales de Los Cristianos, El Médano y Las Teresitas en mayor medida aunque tampoco es descartable considerar el sebadal de San Juan, por los siguientes motivos:

- No pone en peligro los niveles de diversidad genética de la/s población/es receptora/s.
- La posible disminución del *fitness* de la población por la entrada de genotipos y alelos externos (*outbreding depression*) no parece ser un factor de peligro si consideramos dicho movimiento de individuos.
- Los niveles de diferenciación genética, los valores del estimador θ de *F*ST y el análisis de IBD indican que el trasplante hacia estas zonas no repercutiría de forma negativa en los procesos de conexión entre poblaciones que mantienen los niveles de distribución genética.
- Concretamente en El Médano, además podría compensar la deficiencia de heterocigotos detectada y, por consiguiente, atenuar la influencia de la consanguinidad en la dinámica de esta población.

5. BIBLIOGRAFÍA

- Alberto F. 2005. Dispersal, sex and clonality in the marine environment: population genetic structure of the seagrass *Cymodocea nodosa* on Mediterranean and Atlantic coasts. Tesis Doctoral. Universidade do Algarve. 156 pp.
- Alberto F., Arnaud-Haond S., Duarte C.M., Serrão E.A. 2006. Genetic diversity of a clonal angiosperm near its range limit: the case of *Cymodocea nodosa* at the Canary Islands. Marine Ecology Progress Series 309: 117-129.
- Alberto F., Massa S., Manent P., Diaz-Almela E., Arnaud-Haond S., Duarte C.M., Serrâo E. *In press.* Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean-Atlantic transition region. Journal of Biogeography:.
- Arnaud-Haond S., Alberto F., Teixeira S., Procaccini G., Serrão E.A., Duarte C.M. 2005.
 Assessing Genetic Diversity in Clonal Organisms: Low Diversity or Low Resolution?
 Combining Power and Cost Efficiency in Selecting Markers. Journal of Heredity 96: 434-440.
- Arnaud-Haond S., Migliaccio M., Diaz-Almela E., Teixeira S., Van der Vliet M.S., Alberto F., Procaccini G., Duarte C.M., Serrâo E. 2007. Vicariance patterns in the Mediterranean Sea: east-west cleavage and low dispersal in the endemic seagrass *Posidonia oceanica*. Journal of biogeography 34: 963-976.
- Arnaud-Haond S., Belkhir K. 2007. GenClone 1.0: a new program to analyse genetic dat of clonal organisms. Molecular Ecology Notes 7: 15-17.
- Bowen W. 1999. Preserving genes, especies, or ecosystems? Healing the fractured foundations of conervations policy. Molecular Eclology 8: 5-10.
- Caujapé-Castells J., Baccarani-Rosas M. 2005. Transformer-3: a program for the analysis of molecular population genetic data. EXEGEN software & Jardín Botánico Canario "Viera y Clavijo".
- Cavalli-Sforza L.L., Edwards A.W.F. 1967. Phylogenetic analysis: models and estimation procedures. American Journal of HumanGenetics 19: 233-257.
- Clewell A.F. 2000. Restoring for natural authenticity. Ecological restoration 18: 216-217.
- Cox P.A., Laushman R.H., Ruckelshaus M.H. 1992. Surface and submarine pollination in the seagrass *Zostera marina* L.. Botanical Journal of the Linnean Society 109: 281-291.
- Dorken M.E., Eckert C.G. 2001. Severely reduced sexual reproduction in northern populations of a clonal plant, *Decodon verticillatus* (Lythraceae). Journal of Ecology 89: 339-350.
- Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities. of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
- Excoffier L., Smouse P.E., Quattro J.M. 1992. Analisys of molecular variance inferred from metric distances among DNA haplotypes: application to human mitocondrial DNA restriction data. Genetics 131: 479-491.
- Excoffier L., Laval G., Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47-50.
- Falk D.A., Knapp E.E., Guerrant E.O. 2001. An introduction to restoration genetics. Prepared by the Society for Ecological Restoration. For: Plant Conservation Alliance, Bureau of Land Management, US Department of Interior, U.S. Environmental Protection Agency.
- Felsenstein J. 1994. PHYLIP (Phylogeny inference package) Department of Genetics, University of Washington, Seattle.
- Fonseca M., Kenworthy W.J., Thayer G.W. 1998. Gudelines for the conservation and restoration of seagrasses in the United States and adjacent waters. NOAA Coastal Ocean Program Decision Analysis Series N₀ 12. NOAA Coastal Ocean Office, Silver Spring, MD. 222 pp.
- Frankel O.H. 1974. Genetic conservation: our evolutionary responsibility. Genetics 78: 53-65.

- Goldstein D.B., Linares A.R., Cavalli-Sforza L.L., Feldman M.W. 1995. An evaluation of genetic distances for use with microsatellite loci. Genetics 139: 463-471.
- Hedrick P. 2005. "Genetic restoration:" a more comprehensive perspective than "genetic rescue". Trends in ecology and evolution 20: 109.
- Hellberg M.E., Burton R.S., Neigel J.E., Palumbi S.R. 2002. Genetic assessment of connectivity among marine populations. Bulletin of marine science 70 (1): 273-290.
- Hufford K.M., Mazer S.J. 2003. Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends in Ecology and Evolution 18: 147-155.
- Jones T.A. 2003. The restoration gene pool concept: Beyond the native versus non-native debate. Restoration Ecology 11: 281-290.
- Knapp E.E., Rice K.J. 1998. Comparison of isozymes and quantitative traits for evaluating pattern of genetic variation in purple needlegrass (*Nasella pulchra*). Conservation Biology 12 (5): 1031-1041.
- Leberg P.L. 1993. Strategies for population reintroduction: effects of genetic variability on population growth and size. Conservation Biology 7: 194-199.
- Leberg P.L. 2002. Estimating allelic richness: Effects of sample size and bottlenecks. Molecular Ecology 11: 2445-2449.
- Lesica P., Allendorf F.W. 1999. Ecological genetics and the restoration of plant communities: mix or match?. Restoration Ecology 7: 42-50.
- Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209-220.
- Marbá N, Terrados J. 2004. Distribución y requerimientos ecológicos En: Luque Á. A. y Templado J. (Coords). Praderas y bosques marinos de Andalucía, 133-134.
- Mckay J.K., Christian C.E., Harrison S., Rice K.J. 2005. "How local is local?"- A review of practical and conceptual in the genetics of restoration. Restoration Ecology 13: 432-440.
- Millar C.I. & Libby W.J. 1989. Disneyland or native ecosystem: genetics and the restorationist. Restoration and Management Notes 7: 18-24
- Montalvo A. M., Williams S.L., Rice K.J., Buchmann S.L., Cory C., Handel S.N., Nabhan G.P., Primack R., Robichaux R.H.1997. Restoration Biology: a population biology perspective. Restoration Ecology 5: 277-290.
- Moritz C. 1994. Definig "Evolutionary Significant Units" for conservation. Trends in Ecology and Evolution 9: 373-375.
- Moritz C. 1999. Conservation units and traslocations: strategies for conserving evolutionary processes. Hereditas 130: 217-228.
- Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
- Orth R.J., Luckenbach M., Moore K.A. 1994. Seed dispersal in a marine macrophyte: Implications for colonization and restoration. Ecology 75: 1927-1939.
- Palumbi S.R. 2003. Population genetics, demographic connectivity, and the design of marine reserves. Ecological applications 13: 146-158.
- Parks J.C., Werth C.R. 1993. A study of spatial features of clones in a population of bracken fern, *Pteridium aquilinum* (Dennstaedtiaceae). American Journal of Botany 80: 537-544.
- Procaccini G., Piazzi L. 2001. Genetic polymorphism and transplanting success in the Mediterranean seagrass, *Posidonia oceanica* (L.) Delile. Restoration ecology 9: 332-338.
- Raven P.H., Ray, F.E., Eichhorn, S.E. 1986. Biology of plants. 4^a ed. New york: Worth publishers
- Raven Peter H., Ray F. Evert, Susan E. Eichhorn. 1986. Biology of plants. Fourth ed. New York: Worth Publishers.
- Raymond M., Rousset F. 1995a. An exact test for population differentiation. Evolution 49: 1280-1283.
- Raymond M., Rousset F. 1995b. GENEPOP (version 1.2): population genetics software for exacts tests and ecumenicism. Journal of Heredity 86: 248-249.

- Reyes J., 1993. Estudio de las praderas marinas de *Cymodocea nodosa* (Cymodoceae, Magnoliophyta) y su comunidad de epífitos, en El Médano (Tenerife, Islas Canarias). Tesis Doctoral. Universidad de La Laguna. 424 pp
- Rogers D.L., Montalvo A.M. 2004. Genetically appropriate choices for plant materials to maintain biological diversity. University of California. Report to the USDA Forest Service, Rocky Mountain Region, Lakewood, CO.
 - Online: http://www.fs.fed.us/r2/publications/botany/plantgenetics.pdf.
- Rousset F. 1997. Genetic differenciation and estimation of geneflow from F-statistics under isolation by distance. Genetics 145: 1219-1228.
- Sydes M.A., Peakall R. 1998. Extensive clonality in the endangered shrub *Haloragodendron lucasii* (Haloragaceae) revealed by allozymes and RPADs. Molecular Ecology 7: 87-93.
- Swofford D.L., Selander, R.B. 1989. BIOSYS-1: a computer program for the analysis for the allelic variation in genetics. University of Illinois, Urbana, III.
- Takezaki N., Nei M. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144: 389-399.
- Weir B.S., Cockerham C.C. 1984. Estimating *F*-statistics for the analysis of the population structure. Evolution 38: 1358-1370.
- Williams S.L. 2001. Reduced genetic diversity in eelgrass transplantations affects both population growth and individual fitness. Ecological applications 11: 1472-1488.
- Wright S. 1931. Evolution in mendelian populations. Genetics 16: 97-159.
- Wright S. 1943. Isolation by distance. Genetics 28: 114-138.